
Review series

 The Journal of Clinical Investigation   http://www.jci.org   Volume 122   Number 10   October 2012 3439

Hodgkin lymphoma
Ralf Küppers,1 Andreas Engert,2 and Martin-Leo Hansmann3

1Institute of Cell Biology (Cancer Research), Medical School, University of Duisburg-Essen, Essen, Germany. 2Department of Internal Medicine I,  
University of Cologne, Cologne, Germany. 3Senckenberg Institute of Pathology, University of Frankfurt, Frankfurt am Main, Germany.

Hodgkin lymphoma (HL), a B cell–derived cancer, is one of the most common lymphomas. In HL, the tumor cells 
— Hodgkin and Reed-Sternberg (HRS) cells — are usually very rare in the tissue. Although HRS cells are derived 
from mature B cells, they have largely lost their B cell phenotype and show a very unusual co-expression of mark-
ers of various hematopoietic cell types. HRS cells show deregulated activation of multiple signaling pathways and 
transcription factors. The activation of these pathways and factors is partly mediated through interactions of HRS 
cells with various other types of cells in the microenvironment, but also through genetic lesions. The transforming 
events involved in the pathogenesis of HL are only partly understood, but mutations affecting the NF-κB and JAK/
STAT pathways are frequent. The dependency of HRS cells on microenvironmental interactions and deregulated 
signaling pathways may offer novel strategies for targeted therapies.

Introduction
Hodgkin lymphoma (HL) is one of the most frequent lymphomas 
in the Western world, with an annual incidence of about 3 cases 
per 100,000 persons. This lymphoid malignancy involves periph-
eral lymph nodes and can also affect organs such as liver, lung, and 
bone marrow. About 40% of patients suffer from constitutional 
symptoms (“B-symptoms”). Based on differences in the histologi-
cal picture and the phenotype of the tumor cells, HL is subclassified 
into nodular sclerosis, mixed cellularity, lymphocyte-rich, lympho-
cyte-depleted, and nodular lymphocyte-predominant HL (NLPHL) 
(1). The first four subtypes are collectively called classical HL. The 
tumor cells of HL are very rare and usually account for only about 
0.1%–2% of cells in the tissue (Figure 1). In classical HL, the malig-
nant cells are referred to as Hodgkin and Reed-Sternberg (HRS) 
cells, and in NLPHL they are lymphocyte-predominant (LP) cells 
(1). These malignant cells are large, and in classical HL one may dis-
tinguish mononucleated Hodgkin cells and bi- or multinucleated 
Reed-Sternberg cells. In classical HL, the tumor cells are infected 
by EBV in about 40% of cases, which is of pathogenetic relevance.

Cellular origin of HRS and LP cells
Tumor cells usually retain key phenotypic features of the normal 
cells from which they originate. Therefore, the expression of vari-
ous B cell markers by LP cells indicates their B cell derivation (2). 
Moreover, LP cells express markers typical for GC B cells, including 
BCL6, the key regulator of the GC B cell program (3, 4). GC B cells 
are antigen-activated mature B cells involved in T cell–dependent 
immune responses. A close relationship of LP cells to GC B cells is 
also indicated by the histology of NLPHL, in which LP cells grow 
in GC-like structures in association with follicular dendritic and 
follicular Th cells (1). The B cell derivation of LP cells and their 
monoclonality was proven by the detection of clonal Ig heavy- and 
light-chain variable (V) gene rearrangements in these cells (5, 6). 
The Ig V genes of LP cells carry somatic mutations, which are intro-
duced during the GC reaction and hence are a hallmark of GC and 
post-GC B cells (5, 6). Several cases showed intraclonal diversity as 
a sign of ongoing hypermutation during clonal expansion (5, 6), 
further validating the GC B cell origin of LP cells. LP cells seem to 
be selected for expression of a functional B cell receptor (BCR) (7).

Previous immunophenotypic studies have not revealed the ori-
gin of HRS cells because they show a very unusual phenotype, 
with coexpression of markers for various hematopoietic lineages. 
HRS cells can express markers of T cells (CD3, NOTCH1, GATA3), 
cytotoxic cells (granzyme B, perforin), B cells (Pax5, CD20), den-
dritic cells (fascin, CCL17), NK cells (ID2), myeloid cells (CSFR1), 
and granulocytes (CD15) (3). HRS cells always express the activa-
tion marker CD30 (1).

The origin of HRS cells from mature B cells was clarified by the 
demonstration that they carry clonal and somatically mutated Ig 
heavy- and light-chain gene rearrangements (8–11). Surprisingly, 
about 25% of classical HL cases showed loss of function Ig gene 
mutations, including nonsense mutations, in their V genes (8–11). 
GC B cells acquiring such mutations normally rapidly undergo 
apoptosis. Thus, critical steps in HL pathogenesis most likely hap-
pen in the GC to enable the crippled HRS cell precursors to escape 
apoptosis. As many other unfavorable mutations are not easily 
identifiable, HRS cells as a rule may derive from GC B cells with 
unfavorable Ig gene mutations, and hence from apoptosis-prone 
GC B cells (9). It should, however, be stressed that HL development 
(like tumor development in general) is a multistep process, so that 
some transforming events might be carried by HRS precursor cells 
before they enter the GC reaction, and final transforming events 
might occur after the cells have left the GC.

Because of the expression of T cell markers by HRS cells in 
a fraction of classical HL, several such cases were studied for a 
potential T cell derivation, and some of them indeed turned out 
to carry T cell receptor gene rearrangements (12, 13). Thus, in 
rare instances lymphomas diagnosed as HL have a T cell origin 
and represent rare variants of classical HL.

The relationships between HRS cells and putative 
precursor or stem cells
HRS cell clones are always composed of mixtures of mononuclear 
Hodgkin and multinuclear Reed-Sternberg cells. The same holds 
true for the few existing HL cell lines (14–16). Cell fusion does 
not play a role in the generation of the Reed-Sternberg cells (17), 
rather, Reed-Sternberg cells derive from Hodgkin cells through a 
process resembling endomitosis, i.e., nuclear division without cel-
lular division (14, 15). Hodgkin cells of HL cell lines give rise to 
new mixtures of HRS cells, but Reed-Sternberg cells are generally 
unable to undergo further proliferation (14).
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A recent study reported the detection of putative HRS stem cells 
among CD20+BCR+CD30– B cells in the peripheral blood and 
lymph nodes of patients with HL (18). However, that work was 
criticized based on technical concerns, as no clear evidence was 
provided for a clonal relationship between the HRS cells and their 
putative stem cells (19), and further studies are needed to clarify 
this issue. Further complicating the question was the detection 
of side population (SP) cells in several HL cell lines (20, 21). SP 
cells are defined by negativity for Hoechst dye 33342 staining, due 
to expression of ABC transporters, which expel the dye from the 
cell (22). As such transporters also export various chemothera-
peutic drugs, SP cells are often chemoresistant. Moreover, these 
cells share features with cancer stem cells (22). The rare SP cells 
in HL cell lines (about 0.5% of the HRS cells) were found among 
the mononuclear Hodgkin cells, were CD30+ and CD20–, showed 
chemoresistance, and could reestablish HRS cell clones upon sub-
cloning (20, 21). However, SP cells were not detected in all HL cell 
lines (20, 21), which argues against a general role of these cells in 
the maintenance of HRS cell clones.

The lost B cell phenotype of HRS cells
Although HRS cells derive from mature B cells, they show a glob-
al downregulation of the B cell gene expression program (23–25), 
which is unique among B cell lymphomas in its extent. The ini-
tial event that causes this extensive reprogramming is unknown, 
but several contributing factors have been identified. HRS cells 

downregulate expression of numerous B cell transcription fac-
tors, such as OCT2, PU.1, and BOB1, likely causing downregu-
lation of their respective target genes (24, 26). B cell–specific 
genes are also silenced by epigenetic mechanisms in HL (27, 28). 
Furthermore, HRS cells aberrantly express master regulators of 
other hematopoietic cell lineages that suppress B cell genes, in 
particular the T cell factor Notch1 and the NK cell factor ID2 
(29–31). ID2, as well as activated B cell factor 1, which is also 
highly expressed in HRS cells, directly inhibit the important B 
cell transcription factor E2A (30–32). The transcription factors 
STAT5A and STAT5B are also involved in the downregulation of 
B cell genes in HRS cells (33).

Expression of multiple key transcription factors of HSCs may 
further contribute to the peculiar phenotype of HRS cells. HRS 
cells express multiple members of the polycomb group family 1 
and 2 complexes (34–36); although some of these are expressed in 
normal B cells, their co-expression is not seen in normal B cells. 
As polycomb group factors can downregulate B cell genes, and as 
HSC and lymphoid progenitors show promiscuous coexpression 
of markers of distinct hematopoietic cell types (37–39), these fac-
tors may play a role in the downregulation of B cell genes and the 
expression of markers of other lineages in HRS cells.

Transforming events that are as yet unknown may contribute to 
the consistent downregulation of the B cell program in HRS cells. 
Moreover, this specific feature may be directly linked to the fact 
that HRS cells are derived from pre-apoptotic GC B cells. It is also 
possible that, for GC B cells with low-affinity BCRs or complete 
loss of BCR expression, the strong selection pressure to undergo 
apoptosis may select for loss of the B cell identity, so that these 
“failed” B cells escape the apoptosis (23).

Role of EBV in HL pathogenesis
In about 40% of classical HL in the Western world, and in more 
than 90% of pediatric cases of HL in Central America, HRS cells 
are latently infected by EBV, a γ-herpes virus (40). HRS cells are 
clonally infected, suggesting that EBV infection is an early event in 
HL pathogenesis (41). EBV has several types of latency, and in HRS 
cells latency II is observed, meaning that EBV-encoded genes EBV 
nuclear antigen 1 (EBNA1), latent membrane protein 1 (LMP1), 
and LMP2a are expressed. EBNA1 is essential for the replication of 
the episomal EBV genome in proliferating cells. LMP1 mimics an 
active CD40 receptor, a central costimulatory molecule for B cells 
(42). LMP2a carries a cytoplasmic motif that resembles the sig-
naling module of the BCR. As CD40 and BCR signaling are main 
regulators of survival and selection of GC B cells, it was speculated 
that LMP1 and LMP2a can rescue BCR-deficient B cells from apop-

Figure 1
Morphology and immunohistochemical features of HRS cells. Typical 
histological and immunohistochemical picture in classical HL. (A) H&E 
staining of a case of mixed cellularity type HL. A binucleated HRS cell 
is visible in the middle of the image, surrounded by histiocytes, lym-
phocytes, and eosinophilic granulocytes. (B) CD30 immunostaining 
(red) showing some large and small CD30-positive HRS cells. A 
binucleated HRS cell is visible in the middle of the image. HRS cells 
consistently express the TNF receptor family member CD30, so that 
immunostaining for CD30 is often used in the diagnosis of HL. (C) CD3 
immunostaining showing large amounts of T cells that completely or 
partly surround HRS cells. Rosette forming T cells around a HRS cell 
in the middle of the image.
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tosis by replacing these signals (43). Indeed, EBV-immortalized B 
cell lines can be established from BCR-deficient GC B cells (44, 45). 
This suggests that EBV might play a major role as an initial event 
in HL pathogenesis by rescuing crippled GC B cells from apopto-
sis. Interestingly, all HL with null BCR mutations are EBV positive, 
strongly supporting an essential role of EBV in the pathogenesis 
of such lymphomas (46). However, the function of LMP2a in the 
established HRS cell clone is uncertain because most components 
of BCR signaling are downregulated.

Somatic genetic lesions and germline alterations
HRS cells usually show multiple chromosomal abnormalities and 
are aneuploid (47). In addition to clonal abnormalities, multiple 
subclonal aberrations are found, indicating chromosomal instabil-
ity of the tumor (47). Chromosomal translocations involving the 
Ig loci, a hallmark of many B cell non-Hodgkin lymphomas, were 
detected in about 20% of classical HLs (48). Some of them involve 
the known oncogenes BCL1, BCL2, BCL3, BCL6, REL, and MYC, but 

for most cases the partner genes are unknown (48, 49). Considering 
the general silencing of the Ig loci in HRS cells, it is intriguing to 
ask whether oncogenes linked to the Ig loci through translocations 
show deregulated expression in the established HRS cell clone. 
Alternatively, these translocations might be important during early 
stages of HL development, when the HRS precursor cells still have 
a B cell phenotype, but become irrelevant later when additional 
transforming events are acquired.

The detection of constitutive activity of the transcription 
factor NF-κB in HRS cells (50) prompted numerous studies 
to search for gene mutations that contribute to this activity 
(Figure 2). Genomic gains of REL, encoding an NF-κB factor, 
are present in about 30% of cases (51, 52). The positive regu-
lator of the alternative NF-κB pathway, NIK, is also frequently 
affected by genomic gains in HRS cells (53, 54). Mutations in 
the genes of the NF-κB inhibitors IκBα and IκBε were found in 
about 10%–20% of cases (55–58). A20, which is encoded by the 
TNFAIP3 gene, and which is an inhibitor of NF-κB activity, is 

Figure 2
NF-κB and JAK/STAT activity in HRS cells. In the canonical NF-κB signaling pathway, stimulation of various receptors, which complex with TNF 
receptor–associated factors (TRAFs) and the receptor interacting protein (RIP), leads to activation of the IKK complex, targeting the NF-κB 
inhibitors IκBα and IκB for ubiquitination and proteasomal degradation. As a consequence, the NF-κB transcription factors translocate into the 
nucleus, where they activate multiple genes. TNFAIP3 and CYLD are further negative regulators of NF-κB signaling. In the alternative NF-κB 
pathway, activation of receptors such as CD40 and TACI causes stimulation of the kinase NIK (MAP3K14), which then activates an IKKα complex. 
NIK activity is negatively regulated by TRAF3. Activated IKKα processes p100 to p52, which translocates as p52/RELB heterodimers into the 
nucleus. HRS cells have constitutive activity of both NF-κB pathways. Activation of CD40, RANK, BCMA, and TACI through ligands expressed on 
lymphoma-infiltrating cells likely contributes to this activity. Numerous genetic lesions and signaling through the EBV-encoded latent membrane 
protein 1 in EBV-positive cases of HL play important roles in the deregulated NF-κB activity. The JAK/STAT pathway is the main signaling pathway 
for cytokines. In HRS cells, STAT3, -5, and -6 are constitutively active. In addition to activation of cytokine receptors, such as the IL-13 receptor 
and the IL-21 receptor, activation of this pathway is mediated by genomic gains or translocations of the JAK2 gene and frequent inactivating 
mutations of the SOCS1 gene. The frequency of genetic lesions and viral infections affecting NF-κB or STAT activity in HRS cells is indicated as 
percentages. Adapted with permission from Nature Reviews Cancer (2).
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inactivated in about 40% of classical HL cases (59, 60). Notably, 
most TNFAIP3-mutated HLs are EBV negative, suggesting that 
A20 inactivation and EBV infection are largely mutually exclu-
sive transforming events in classical HL (60). TNFAIP3 reconsti-
tution in A20-deficient HL cell lines impairs survival of the cells, 
establishing TNFAIP3 as a tumor suppressor gene (60). Other 
regulators of NF-κB, i.e., BCL3 and the tumor suppressor genes 
CYLD and TRAF3 are rarely mutated in HRS cells (53, 61, 62). 
Hence, multiple genetic lesions in the NF-κB pathway contrib-
ute to its dysregulation in HRS cells. Remarkably, HL cell lines 
often carry mutations of several NF-κB regulators, indicating 
that HRS cells may require distortions of more than one factor 
of this pathway to obtain the strong NF-κB activity that is essen-
tial for their survival and proliferation.

Another signaling pathway activated in HRS cells for which 
genetic lesions have been found is the JAK/STAT pathway (Figure 
2). JAK2 shows chromosomal gains in about 20% of HL, and in rare 
cases is translocated (63, 64). JAK2 functions in HRS cells as an 
activator of STAT signaling and is also involved in epigenetic regu-
lation, as it can phosphorylate histone H3 (65). SOCS1, a main 
inhibitor of STAT activity, is affected by inactivating mutations in 
about 40% of classical HL cases (66).

The genomic region on chromosome 9p24, which shows gains in 
HRS cells and in which the JAK2 gene is located, also encompasses 
the gene JMJD2C and the programmed death 1 ligand (PD-1L) 
genes PD-L1 and PD-L2 (65, 67). PD-1Ls can inhibit PD-1–express-
ing T cells and thereby may contribute to an immunosuppressive 
microenvironment in HL (67). JMJD2C encodes a histone demeth-
ylase, and downregulation of its expression in HL cell lines is toxic 
(65). Thus, a single genetic event — gains of chromosomal region 
9p24 — may contribute to HL pathogenesis by the concurrent 
deregulation of at least four genes.

Translocations involving the MHC class II transactivator gene 
CIITA have been detected in about 15% of classical HL cases (68). 
These translocations seem to impair CIITA function and hence 
dampen MHC class II expression. Downregulation of MHC class 
II expression by HRS cells is an adverse prognostic factor (69), but 
the reasons for this association are unclear. Other genes that were 
examined for mutations in HRS cells, including TP53, CD95, and 
ATM, were only rarely mutated (3).

By comparison, little is known about genetic lesions in LP cells. 
Translocations of the BCL6 protooncogene are found in about 30% 
of NLPHL cases (70). SOCS1 is inactivated in LP cells by somatic 
mutations in 40% of cases (71). Although LP cells show strong NF-κB 
activity (72), genetic lesions of TNFAIP3 and NFKBIA are rare, if they 
occur at all, in these cells (73). As LP cells also appear to lack REL 
gains and are not infected with EBV (40), the mechanisms for NF-κB 
activation in HRS and LP cells seem to be strikingly different.

Several recent studies addressed the issue of whether germline 
alterations or polymorphisms contribute to HL pathogenesis; 
indeed, HL is one of the lymphomas with the strongest familial 
association (74). KLHDC8B was found as a constitutional translo-
cation partner in the germline of a family with several HL patients 
(75). Moreover, a gene polymorphism causing reduced KLHDC8B 
translation occurs at increased frequency in other families with 
HL. The function of KLHDC8B is largely unknown, but its down-
regulation in a cell line results in increased frequency of binucle-
ated cells (75). In another study, a germline frameshift mutation of 
the NPAT gene was found in a family with four members affected 
by NLPHL (76). Moreover, a replacement mutation in NPAT was 

observed at significantly increased frequency in sporadic NLPHL 
and classical HL patients than in healthy controls. The conse-
quences of NPAT mutations in HRS cells remain to be clarified. A 
genome-wide association study of HL identified risk loci at 2p16.1, 
8q24.21, and 10p14 (77). Although the odds ratios are relative-
ly low, it is remarkable that the risk loci involve REL (discussed 
above), PVT1 (involved in translocations in lymphoid malignan-
cies), and GATA3 (a T cell transcription factor that shows aberrant 
expression and activity in HRS cells) (78).

Deregulated signaling pathways and transcription factors
As discussed above, HRS cells show constitutive activity of the 
NF-κB and the JAK/STAT signaling pathways. These two path-
ways are usually only transiently activated in B lymphocytes. Also, 
as mentioned, HRS cells show constitutive activity of polycomb 
group proteins and of Notch1. Activation of Notch1 is mediated 
by its ligand Jagged1, which is expressed by cells in the HL micro-
environment (79). Moreover, HRS cells have downregulated the 
Notch1 inhibitor Deltex (29).

Several additional signaling pathways show deregulated activ-
ity in HRS cells. These include the PI3K/AKT pathway and the 
MAPK/ERK pathway (80, 81). Inhibition of these pathways in HL 
cell lines has apoptotic and/or anti-proliferative consequences (80, 
81), suggesting their critical role in HRS cell survival and prolif-
eration. HRS cells also show aberrant expression and activity of 
multiple receptor tyrosine kinases that are not normally expressed 
by B cells (82, 83). Receptor tyrosine kinases have multiple func-
tions in the regulation of cell growth, survival, and differentiation. 
The aberrant expression of the myeloid cell receptor and proto-
oncogene CSF1R in HRS cells is mediated through activation 
of an endogenous long terminal repeat located upstream of the 
CSF1R gene (83).

Deregulated microRNA expression in HRS cells
MicroRNAs (miRNAs) are small, non-coding RNAs that bind 
to complementary sequences in the 3′ end of mRNAs and 
have multiple important physiological functions. Binding of a 
miRNA to an mRNA induces either degradation of the mRNA 
or translational silencing. Molecular studies have revealed a 
number of miRNAs with deregulated expression in HRS cells 
as compared with normal B cells (84, 85). For most of these, 
it is unclear whether their deregulated expression is of patho-
physiological relevance. However, the diminished expression of 
miR135a appears to contribute to high expression of its target 
gene JAK2 (86), and the increased expression of members of the 
miR17/106b seed family negatively regulates p21, an inhibitor 
of cell cycle progression (87). Moreover, miR155, which is highly 
expressed in HRS cells, has oncogenic properties in B lineage 
cells (88), pointing to a pathogenic role.

Microenvironmental interactions
The microenvironment that surrounds the malignant cells of HL 
is a critical determinant of its initiation and progression. HRS 
cells interact with CD4+ and CD8+ T cells, B cells, plasma cells, 
macrophages, mast cells, dendritic cells, neutrophils, eosinophils, 
and fibroblasts and indeed actively attract them via the secretion 
of cytokines and chemokines (Figure 3). The microenvironment 
in HL is unique among lymphomas both in the complexity of cell 
types involved and its size, with the non-tumor cells often account-
ing for 99% of cells in the tumor.
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The attraction of many of these cells and their interaction with 
HRS cells is presumably a very important factor for the survival 
and proliferation of HRS cells. Indeed, HRS cells are usually not 
found in the peripheral blood, and it is very difficult to grow HRS 
cells in culture or in immunodeficient mice (89, 90). Numerous 
interactions can be envisioned. For example, CD4+ Th cells, which 
are often in close contact with HRS cells, express CD40L and 
CD28, the ligands for CD40 and CD80/CD86, which are expressed 
by HRS cells (91, 92). CD40 stimulation leads to NF-κB activation, 
and signaling through CD80 is an important costimulatory signal 
in B cell–T cell interaction. Other factors and interactions help to 

rescue HRS cells from an immunological attack, including inhibi-
tion of cytotoxic T cells by Tregs (93). Cytotoxic T cells are also 
inhibited through expression of the PD1 and CD95 ligands and 
secretion of IL-10, TGF-β, and galectin1 by the HRS cells (94–97).

Current and developing treatment options
With the introduction of multi-agent chemotherapy and 
improved radiation techniques, the prognosis of patients with 
HL has substantially improved. Depending on stage and clini-
cal risk factors, 65%–90% of patients can be rendered disease-
free after five years (98). Patients are usually divided into early 

Figure 3
Cellular interactions in the HL microenvironment. HRS cells orchestrate the infiltration and activation of multiple cell types into the lymphoma 
microenvironment by secretion of cytokines and chemokines. Eosinophils and mast cells may stimulate HRS cells through CD30-CD30L interac-
tions, whereas neutrophils may stimulate HRS cells through APRIL-BCMA interactions and the secretion of nerve growth factor (NGF), which 
binds to the receptor tyrosine kinase TRKA on HRS cells. The cellular interactions between CD4+ Th cells likely involve adhesion molecules 
(CD54-CD18/11a) and key molecules of B cell–T cell interaction, i.e., CD40-CD40L and CD80-CD28. Cytotoxic T cells and NK cells are inhibited 
through Tregs by secretion of IL-10, and perhaps additional mechanisms, and directly by the HRS cells though secretion of immunosuppressive 
mediators (IL-10, TGF-β). Cytotoxic T cells are furthermore inhibited by galectin1, secreted by HRS cells, and expression of PD-1L by HRS cells. 
CD95 ligand–expressing HRS cells may induce apoptosis of CD95+ cytotoxic T cells. Macrophage infiltration is of prognostic relevance, but the 
interactions between HRS cells and macrophages are only partly understood. Adapted with permission from Nature Reviews Cancer (2).
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favorable, early unfavorable, and advanced-stage risk groups. 
For early favorable patients with classical HL, two cycles of 
ABVD chemotherapy followed by involved field radiotherapy 
(IFRT) with 20 Gy are considered standard of care (99). Early 
unfavorable patients usually receive four cycles of ABVD che-
motherapy followed by IFRT with 30 Gy (100, 101). Treatment 
of patients with advanced-stage HL is more controversial: six 
to eight cycles of ABVD have been regarded standard of care 
for many years (102, 103), but this regimen is being challenged 
by the more effective but also more toxic BEACOPPescalated 
approach (99). Direct comparisons between ABVD and BEA-
COPPescalated confirmed that better tumor control is achieved 
with BEACOPPescalated but failed to prove differences in overall 
survival due to the low number of patients included (104, 105). 
The HD15 trial of the German Hodgkin Study Group (GHSG) 
demonstrated that six cycles of BEACOPPescalated are less toxic 
and more effective than the old standard of eight cycles and 
thus represent the new GHSG standard of care (106). In stage 
IA NLPHL, patients are usually treated with IFRT alone, where-
as classical HL is treated with combined modality. All other 
NLPHL patients receive the same treatment as those with clas-
sical HL (107). In addition, anti-CD20 monoclonal antibodies 
have been shown to be effective when used as single agents in 
relapsed NLPHL patients (108, 109).

The current goal in the treatment of HL patients is to reduce 
toxicity but maintain efficacy. The rationale for attempting 
dose reduction is the high risk of acute and long-term toxicity 
including secondary neoplasia, organ toxicity to heart and lung, 
fatigue, and infertility (110). Based on retrospective, nonrandom-
ized studies, positron emission tomography is currently being 
explored to identify high-risk patients early in the course of che-
motherapy (111, 112).

Another approach to reduce toxicity of treatment while main-
taining efficacy is the development of less toxic, targeted drugs. 
Here, the CD30 antigen has been a focus of interest due to the 
strong expression on HRS cells. Several monoclonal antibodies 
targeting CD30 have been evaluated in various formats (113). 
Recently, a new antibody drug conjugate targeting CD30, bren-
tuximab vedotin, demonstrated very good efficacy and toler-
ability in a phase I study (114). Brentuximab vedotin was subse-
quently registered for the treatment of relapsed HL and CD30+ 
anaplastic large cell lymphoma. A number of other promising 
new drugs targeting pathways active in HL are currently being 
evaluated in clinical trials (Table 1) and might further improve 
the treatment of HL.

Conclusions and perspective
Whereas most lymphomas, including NLPHL, retain key features of 
their cell of origin, the GC B cell–derived HRS cells of classical HL 
are unique in the extent to which they have downregulated their B 
cell–specific gene expression program and have gained expression 
of numerous markers typical for other hematopoietic cell types. 
Perhaps this reprogramming is an essential strategy for the surviv-
al of HRS cells as failed GC B cells unable to express high-affinity 
BCRs. The genetic lesions involved in the pathogenesis of HL are 
only partly understood and appear to be heterogeneous. However, 
transforming events are frequent in members of the NF-κB and 
JAK/STAT signaling pathways, suggesting that they have a critical 
role in HL development. Numerous other signaling pathways and 
transcription factors also show deregulated activity in HRS cells. 
The activation of these pathways is presumably to a large extent 
mediated by interactions of HRS cells with other cells in their micro-
environment. Indeed, HRS cells actively attract many cells into the 
lymphoma tissue, and thereby orchestrate the typical inflammatory 
microenvironment. This environment probably promotes the sur-
vival of HRS cells and helps them to escape attack from cytotoxic  
T or NK cells. Considering the dependency of HRS cells on multiple 
deregulated signaling pathways and numerous cellular interactions, 
these features may offer novel strategies for targeted therapies, e.g., 
by specific inhibition of signaling pathways or the interaction of 
HRS cells with other cells in the lymphoma tissue.

Note added in proof. A recent global gene expression study of iso-
lated HRS cells and other normal and malignant B cells revealed, 
among other findings, that EBV infection has surprisingly little 
specific influence on gene expression of HRS cells, that the lost B 
cell phenotype of HRS cells is not linked to acquisition of a plasma 
cell–like gene expression program, and that HRS cells and HL cell 
lines differ extensively in gene expression (122).
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Table 1
New antibodies and molecules: clinical trials in HL

Drug name Class Company Phase Reference
Brentuximab vedotin  Anti-CD30 monoclonal antibody Seattle Genetics, Takeda I–III 114, 115
 (SGN-35; ADCETRIS)
AFM13 Anti-CD16/CD30 bispecific antibody Affimed I 116
Ofatumumab (ARZERRA) Anti-CD20 monoclonal antibody GlaxoSmithKline II 117
Lenalidomide (Revlimid) Immunomodulatory drug Celgene II 118
Resminostat (4SC-201) HDAC inhibitor 4SC I 119
4SC-202 HDAC inhibitor 4SC I 120
Everolimus (RAD001; Affinitor) mTOR inhibitor Novartis Pharmaceuticals II 121
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